An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR
نویسندگان
چکیده
منابع مشابه
An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR.
The eukaryotic bZIP transcription factors are critical players in organismal response to environmental challenges. In fungi, the production of secondary metabolites (SMs) is hypothesized as one of the responses to environmental insults, e.g. attack by fungivorous insects, yet little data to support this hypothesis exists. Here we establish a mechanism of bZIP regulation of SMs through RsmA, a r...
متن کاملAspergillus nidulans hypA regulates morphogenesis through the secretion pathway.
Aspergillus nidulans hypA encodes a predicted 1474 amino acid, 161.9 kDa cytoplasmic peptide. Strains with hypA1 and hypA6 alleles are wild type at 28 degrees C but have wide, slow-growing hyphae and thick walls at 42 degrees C. hypA1 and hypA6 have identical genetic lesions. hypA1 and hypA6 restrictive phenotypes have statistically similar morphometry, and strains with either allele can conidi...
متن کاملGenetics of Polyketide Metabolism in Aspergillus nidulans
Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly org...
متن کاملPhosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development.
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their pr...
متن کاملNonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene.
Aspergillus sojae belongs to the Aspergillus section Flavi but does not produce aflatoxins. The functionality of the A. sojae aflR gene (aflRs) was examined by transforming it into an DeltaaflR strain of A. parasiticus, derived from a nitrate-nonutilizing, versicolorin A (VERA)-accumulating strain. The A. parasiticus aflR gene (aflRp) transformants produced VERA, but the aflRs transformants did...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Microbiology
سال: 2012
ISSN: 0950-382X
DOI: 10.1111/j.1365-2958.2012.07986.x